<cite id="xjdzl"><th id="xjdzl"><var id="xjdzl"></var></th></cite><var id="xjdzl"></var>
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"></menuitem>
<menuitem id="xjdzl"><ruby id="xjdzl"></ruby></menuitem>
<menuitem id="xjdzl"></menuitem><menuitem id="xjdzl"><ruby id="xjdzl"><noframes id="xjdzl">
<menuitem id="xjdzl"><ruby id="xjdzl"></ruby></menuitem><menuitem id="xjdzl"><i id="xjdzl"><noframes id="xjdzl">
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"><i id="xjdzl"></i></menuitem>
<menuitem id="xjdzl"></menuitem>
<var id="xjdzl"><ruby id="xjdzl"><address id="xjdzl"></address></ruby></var>
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"></menuitem><thead id="xjdzl"><i id="xjdzl"></i></thead>
<menuitem id="xjdzl"></menuitem>
歡迎進(jìn)入金湖虹潤儀表有限公司!
新聞中心
首頁(yè) > 新聞中心 > 有關(guān)諧波以及無(wú)功電流檢測概括

有關(guān)諧波以及無(wú)功電流檢測概括

 更新時(shí)間:2009-09-01 點(diǎn)擊量:2356

 

APF補償電流的檢測不同于電力系統中的諧波測量。它不須分解出各次諧波分量,而只須檢測出除基波和有功電流之外的總的高次諧波和無(wú)功畸變電流。難點(diǎn)在于準確、實(shí)時(shí)地檢測出電網(wǎng)中瞬態(tài)變化的畸變電流,為有源電力濾波器控制系統進(jìn)行補償提供電流參考,這是決定APF性能的關(guān)鍵。目前文獻已報道運行的三相APF中所使用的幾種諧波電流檢測方法,除了各自存在的難以克服的缺陷外,共同存在的問(wèn)題是,由于是開(kāi)環(huán)檢測系統,故對元件參數和系統的工作狀況變化依賴(lài)性都比較大,且都易受電網(wǎng)電壓畸變的影響。對單相電路的諧波和無(wú)功電流的檢測還存在實(shí)時(shí)性較差的缺點(diǎn)。
    本文對目前有源電力濾波器中應用的畸變電流檢測與控制方法進(jìn)行了分析比較,在此基礎上,針對APF中只須檢測總的畸變電流,反向后注入系統,以抵消或補償系統中畸變電流,使電網(wǎng)僅提供基波有功電流這一工作特點(diǎn),從保證APF能zui有效地工作出發(fā),綜合瞬時(shí)無(wú)功功率理論檢測法的快速性和閉環(huán)電路的魯棒性,提出了基于瞬時(shí)無(wú)功功率理論的閉環(huán)檢測方案。從諧波及無(wú)功電流開(kāi)環(huán)、閉環(huán)檢測電路抽象出檢測電路的本質(zhì)(本文稱(chēng)為統一模型),在此基礎上,給出了檢測電路的優(yōu)化設計方案,研究了檢測系統中等效低通濾波器的階數與截止頻率對檢測精度與快速性的影響,推導了統一模型下閉環(huán)檢測電路的實(shí)現。zui后,通過(guò)實(shí)驗加以驗證。
1 基波幅值檢測原理
    設單相電路中的電源電壓為
    非線(xiàn)性負荷電流為
iL(t)=if(t)+ih(t)=ifp(t)+ifq(t)+ih(t)
=ifp(t)+ic(t)    (2)
式中:if(t)為iL(t)的基波電流;
ih(t)為iL(t)中高次諧波電流;
ifp(t),ifq(t)分別為基波電流的有功分量和無(wú)功分量;
ic(t)為要補償的諧波和無(wú)功電流之和,稱(chēng)為畸變電流。
   因為,負荷電流中的基波有功分量必定是一個(gè)初相角與電網(wǎng)電壓相同,角頻率為基波角頻率ω的正弦波,所以,我們可以設負荷電流的基波有功分量為
ifp(t)=Asint    (3)
    若能求出A的大小,則可由式(3)得出基波有功電流的表達式。為求出A的大小,先對非線(xiàn)性負荷電流進(jìn)行傅立葉分解,有
式中:m,n均為整數;
Am,φm,An,φn為各次電流的幅值和初相角。
    從式(4)可以看出負荷電流的基波有功分量幅值為A1cosφ1,為分離此值對式(4)左右兩邊同乘以sinωt,得到Amsin(mωt+φm)sinωt=A1cosφ1+A1cosφ1sin+A1sinφ1cos2ωt+Am(5)從式(5)可以看出,我們已得出了負荷電流中基波有功分量幅值的一半值,也就是式中的A1cosφ1,我們再把此值擴大2倍,即得出電流基波有功分量幅值,也就得出了基波有功電流ifp(t)=A1cosφ1sinωt。因此,畸變電流為
ic(t)=iL(t)-ifp(t)=iL(t)-A1cosφ1sinωt    (6)
    這樣,即可實(shí)時(shí)檢測出畸變電流的大小。
    圖1為根據以上分析所得出的電路設計的原理圖。該圖中ea為電源相電壓,sinωt可通過(guò)正弦信號發(fā)生電路得到。PLL為鎖相環(huán),它的作用是鎖定電壓信號,以讓正弦波發(fā)生器產(chǎn)生一個(gè)與電網(wǎng)電壓同頻同相的正弦波。LPF為一低通濾波器,用來(lái)濾掉基波以外的其它高次諧波。從該原理圖也可以看到,由于整個(gè)系統是開(kāi)環(huán)系統,所以,不存在系統不穩定的問(wèn)題。需要指出的是該方法可以方便地用于單相電路中的檢測。
2 基于A(yíng)NN理論自適應檢測諧波電流的原理
    自適應噪聲抵消法可以把信號s(t)和加性噪聲n(t)分離開(kāi)來(lái),原理如圖2所示。系統的輸入信號包括原始輸入s(t)+n(t)和參考輸入n′(t)。參考輸入n′(t)經(jīng)自適應濾波器調整后的輸出為y(t)。s(t)和n(t)不相關(guān),和n′(t)也不相關(guān),但是n(t)和n′(t)具有相關(guān)性。當y(t)在zui小均方誤差意義下zui接近主通道噪聲n(t)時(shí),n(t)得到了*抑制。此時(shí),系統輸出z(t)在zui小均方誤差意義下也zui接近信號s(t),從而把信號s(t)檢測出來(lái)。這里,z(t)同時(shí)作為誤差反饋信號e(t)用來(lái)調整自適應濾波器的參數。自適應噪聲抵消法只需要很少或根本不需要任何關(guān)于信號和噪聲的先驗統計知識,就可以從混合信號中檢測出所需要的信號。
    基于上述自適應噪聲抵消法原理,便可得到如圖3所示的自適應噪聲抵消法檢測諧波電流的原理圖。設單相電路的電源電壓us=Umsinωt,則非線(xiàn)性負載的周期非正弦電流可以用傅立葉級數展開(kāi)為
式中:i1(t)及in(t)分別為基波電流和n次諧波電流。
可以把它們進(jìn)一步分解為正弦和余弦兩部分:
i1(t)=I1cosφ1sinωt+I1sinφ1cosωt=i1p(t)+i1q(t)
in(t)=Incosφnsinnωt+Insinφncosnωt=ins(t)+inc(t)  n>1    (8)
式中:i1p(t)及i1q(t)分別為基波有功電流和基波無(wú)功電流;
ins(t)及inc(t)分別為n次諧波的正弦和余弦分量。
    用自適應噪聲抵消法進(jìn)行諧波檢測,取iL作為原始輸入,若將i=i1+i2+……in看作“噪聲干擾電流”,則其他更高次諧波的總電流ih就是需要檢測的“信號”,i和ih不相關(guān);取sinωt,cosωt以及它們的2、3、……、n次等倍頻諧波作為參考輸入,它們和i對應的各次正弦和余弦分量分別相關(guān),而和ih不相關(guān)??梢钥闯?,上述條件滿(mǎn)足自適應噪聲抵消法的要求,當選用適當的多路自適應濾波器并采用zui小均方算法后,可以通過(guò)多路自適應濾波器得到“噪聲干擾電流”i的各分量以及“信號”ih的zui小均方誤差意義下的*逼近值。從上述分析可以看出:
1)檢測總諧波電流只取sinωt,cosωt作為參考輸入,ANN學(xué)習完成之后,系統的輸出z(t)即為總諧波電流。
2)檢測奇次諧波電流取sinωt,cosωt以及
sin(2k+1)ωt,cos(2k+1)ωt(32k+1n,k為
正整數)等作為參考輸入,ANN學(xué)習完成之后i2k+1=w(2k+1)s×sin(2k+1)ωt+w(2k+1)c×
cos(2k+1)ωt,就是對應的奇次諧波電流的值。
3)檢測偶次諧波電流取sinωt,cosωt以及sin2kωt,cos2kωt(2≤2k≤n,k為正整數)等作為參考輸入,ANN學(xué)習完成之后i2k(t)=w2ks×sin2kωt+w2kc×cos2kωt,就是對應的偶次諧波電流的值。
3 基于瞬時(shí)無(wú)功功率理論的畸變電流瞬時(shí)檢測方法
    瞬時(shí)無(wú)功功率理論[1]的基本思路是將abc三相系統電壓、電流轉換成αβο坐標系上的矢量,將電壓、電流矢量的點(diǎn)積定義為瞬時(shí)有功功率;將電壓、電流矢量的叉積定義為瞬時(shí)無(wú)功功率,然后再將這些功率逆變?yōu)槿嘌a償電流。瞬時(shí)無(wú)功功率理論突破了傳統功率理論在“平均值”基礎上的功率定義,使諧波及無(wú)功電流的實(shí)時(shí)檢測成為可能。該方法對于三相平衡系統的瞬變電流檢測具有較好的實(shí)時(shí)性,有利于系統的快速控制,可以獲得較好的補償效果。但該方法對于三相不平衡負荷所產(chǎn)生的無(wú)功和諧波電流,補償效果則不理想,且只適用于三相系統,不能用于單相系統。
3.1 開(kāi)環(huán)檢測方案
    基于瞬時(shí)無(wú)功功率理論的諧波及無(wú)功電流開(kāi)環(huán)檢測方案[2]如圖4所示。
    圖4中,LPF為低通濾波器,變換矩陣C3s/2r為三相靜止坐標系到兩相旋轉坐標系(dq坐標系)的變換陣。在諧波及無(wú)功電流的檢測系統中,首先檢測基波有功電流,然后從三相負載電流中減去基波有功電流,從而獲得諧波及無(wú)功電流。根據瞬時(shí)無(wú)功功率理論,可以推導如下結論[3][4]:三相負載電流經(jīng)過(guò)dq變換,得到有功電流ip和無(wú)功電流iq(圖4中未畫(huà)出)?;ㄓ泄﹄娏髟赿q坐標系下表現為電流ip中的直流分量。在dq坐標系下,將有功電流ip進(jìn)行低通濾波得到直流分量,經(jīng)過(guò)dq反變換可以得到基波有功電流。上述檢測方案具有動(dòng)態(tài)響應快、實(shí)時(shí)性好的優(yōu)點(diǎn)。但是,由于電路采用開(kāi)環(huán)結構,檢測系統魯棒性較差,需要采用高精度模擬乘法器[5]。
3.2 閉環(huán)檢測方案
    為了增強檢測系統的魯棒性,將閉環(huán)拓撲結構與瞬時(shí)無(wú)功功率理論的原理結合起來(lái),可以構造出如圖5所示的閉環(huán)檢測電路[6]。
    圖5中,G(s)與圖4中的LPF不同,指一般的傳遞函數。諧波及無(wú)功電流檢測的基本原理與圖4相同,也是先獲得基波有功電流,然后從負載電流中減去基波有功電流,從而得到諧波及無(wú)功電流。
4 仿真和實(shí)驗驗證
    為驗證所提出的諧波電流檢測方法,進(jìn)行了仿真和實(shí)驗驗證,的單片機和模擬半導體供應商
    MicrochipTechnology近期推出一款適用于數碼應用的創(chuàng )新模擬器件。
    新器件采用具有低功耗片選的8引腳封裝,并實(shí)現標準二級放大器信號鏈。器件內部的二級放大連接功能可將一個(gè)運算放大器的輸出作為另一個(gè)運算放大器的輸入,從而使得整體設計更為緊湊。
    MicrochipMCP62x5器件能在擴展工業(yè)溫度范圍(即-40℃~125℃)內運行,能提供軌到軌輸入/輸出(I/O)的單端運算放大器。新器件的增益帶寬積(GBWP)為2MHz、5MHz及10MHz,可在低供電電流下運行,有助于設計人員開(kāi)發(fā)電流流量設計。
    新器件GBWP變化的遷移路徑,設計人員可以根據具體應用對電流流量和GBWP的要求,而優(yōu)選該應用的GBWP。
    新器件廣泛適用于傳感器、汽車(chē)、儀表、工業(yè)及電池驅動(dòng)應用領(lǐng)域。MCP6275的增益帶寬為2MHz,工作電壓范圍為5.5~2.0V,供電電流為165μA。MCP6285的增益帶寬為5MHz,工作電壓
范圍為5.5~2.2V,供電電流為450μA。MCP6295的增益帶寬為10MHz,工作電壓范圍為5.5~2.4V,供電電流為1.0mA。
    新器件采用8引腳PDIP和SOIC封裝,現可提供樣片,并已投入量產(chǎn)。如需更多信息,請瀏覽。實(shí)驗結果表明該方法具有下述優(yōu)點(diǎn):
1)基于統一模型的閉環(huán)檢測法以瞬時(shí)無(wú)功功率理論為基礎,因而能清晰地解析出各次諧波、無(wú)功及基波有功電流;
2)由于采用閉環(huán)系統,檢測電路的運行特性幾乎不受參數變化的影響;
3)優(yōu)異的性能并沒(méi)有增加系統的復雜性和制造成本。
5 結語(yǔ)
    本文提出了一種簡(jiǎn)便的基于瞬時(shí)無(wú)功功率理論的自適應閉環(huán)系統,以檢測諧波及無(wú)功電流,通過(guò)實(shí)驗驗證了理論分析:
1)基于瞬時(shí)無(wú)功功率理論的諧波及電流檢測方法能準確、快速地解析出各次諧波、無(wú)功及基波有功電流;
2)由于采用自適應閉環(huán)系統,檢測電路特性對參數變化不敏感,魯棒性好;
3)該方案性能優(yōu)異而且結構簡(jiǎn)單,在有源電力濾波器系統中有相當好的應用前景。

蘇公網(wǎng)安備 32083102000179號

<cite id="xjdzl"><th id="xjdzl"><var id="xjdzl"></var></th></cite><var id="xjdzl"></var>
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"></menuitem>
<menuitem id="xjdzl"><ruby id="xjdzl"></ruby></menuitem>
<menuitem id="xjdzl"></menuitem><menuitem id="xjdzl"><ruby id="xjdzl"><noframes id="xjdzl">
<menuitem id="xjdzl"><ruby id="xjdzl"></ruby></menuitem><menuitem id="xjdzl"><i id="xjdzl"><noframes id="xjdzl">
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"><i id="xjdzl"></i></menuitem>
<menuitem id="xjdzl"></menuitem>
<var id="xjdzl"><ruby id="xjdzl"><address id="xjdzl"></address></ruby></var>
<thead id="xjdzl"></thead>
<menuitem id="xjdzl"></menuitem><thead id="xjdzl"><i id="xjdzl"></i></thead>
<menuitem id="xjdzl"></menuitem>
仲巴县| 绵阳市| 开化县| 调兵山市| 长治县| 商水县| 彭州市| 苏州市| 宁国市| 抚州市| 贵阳市| 阿鲁科尔沁旗| 衡水市| 桃江县| 铜川市| 历史| 射阳县| 贵溪市| 蒙自县| 绵竹市| 白沙| 广昌县| 全椒县| 华池县| 吉木萨尔县| 德阳市| 赤壁市| 古浪县| 镇远县| 菏泽市| 延吉市| 惠安县| 朝阳县| 开远市| 曲靖市| 凉山| 元朗区| 舒城县| 元谋县| 井冈山市| 勐海县| http://444 http://444 http://444 http://444 http://444 http://444